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A method is devised to simulate the movement and spreading of a patch
of contaminant in lwo-dimensional turbulent flow, The turbulent mation
is exponentially divided into components of differing wave number,
adjacent components being made to have correlation times ditfering by a
factor of two, The turbulent mation is then reconstructed by replacing
gach component with a sinusoidal advection field having a randomly
directed wave number. Contaminant particles are advected by cach of
the reconstructed components, the smallest scale components heing
applied tirst. A computer simulation was performed, using a Kolmogorow

k=53 turbulent energy spectrum. Batchelor's o =

= t%? law for the spreading

of a contaminant patch was reproduced, approximately, as was Richard
son’'s non-Gaussian asymptotic form of the distance-neighbour function.
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A turhulent flow field 18 generally a much more eftective
way of dispersing a contaminant than is molecular diffu-
sion. l'or e'lcamplfl in tha lower nLTnuxpin.‘:E, the molecular
diffusivity is about 2 2 107% 10 & w]mrms the effective
turbulent diffusivity ranges from 0 m? s whun Qne con-
siders the effeet of wind gusts, to 107 m® 1 when one
considers variations in the plohal circulation.' 1 is this
variation in the effectivencss of turbulent motions for
dispersion at different scales which prompts one Lo distin.
guish berween abanlnte and relative dispersion.

Tayler® considered the movement of a ‘marked’ fluid
particle in o turbulent flow, He assumed thal the mean
flova weas zero, and Lhat the turbolence was statistically
humugeneous, isotropic and starionary, He found, Tor
length- and time-seales much greater than the largest scales
characteristic of the turbulence, that the particls would
gxecule a simple random walk, If the particle is released
al time zero and ohsarved al time ¢, and the expediment
repeated many times, U root-mean-square distance tlhll
the patticle will have moved will he proportonal Lo £
This r**-dependence will also apply to the size of a cluster
of particles, if it is assumed that each particle in the cluster
moves independently of all the others,
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IL s Talse to assume that the contaminani particles in 4
cluster all move independently if the particles are not all
separated by distunces which are large compared with the
lurgest turbulence length-scale. 1T the particles have smaller
separations one must consider the concept of relative dis-
persion: the process of spreading of a patch of contaminant
as it moves within the Muid, The spreading will be causad
by the turbulent motion on scales of aboat the same size
as the patch and smaller. Motions at larger scales will cause
the patels to deift about withour significant spreuding. As
the parch becomes larger, its spreading will become subject
to the influence of larger scales of the mrbulent melion,
and it is this effect which vauses the increase in turbulent
diffusivity nuted by Richardson.' If one wishes Lo investi-
gate the spreading of a patch of contaminant, it is more
narural to look initially al the behaviour of the separation:

F=di—X) (1}

of a pair of contaminant particles, rather than the move-
ment of a single particle relative o a fixed origin,

Using Kolmeogorov's theary of locally isotropic Lurbu-
lence, together with associaled dimensional analysis argu-
ments, Batchelor® showed thar:

,ﬂ:{l}'lz}l;i" -Ell.zfy? 3]

where s the turbulent energy dissipation rate, and the
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time 1 is measured from a suitably chosen origin, with the
angle brackets denoting an ensemble-average. The above
equation holds within the “inertial subrange” of the scales
of turhulenl motion, where viscous forces are small com-
pared to inertiol forces, and where the energy spectrum of
rhe rurbulence is given hy:

By 52 (3

where & is the modulus of wave numbers in the Fourder

decomposition of the turbulent velocity lield,
Lguation {2) implies a dispersion coefficient:

1k :
-:—ﬁl_v 1?3 g3 (4)
& Af
T'here is experimantal evidence® thar the above 4/3-power
law iy still valid even il the Reynolds number is Loo small
for nn inertial subrange to exist,
If one considers a parch of contaminant with concen-
tration T'ix, 1), eguation (2] can be replaced by:
o = gh3rid (5)
with the standard deviation:
(J | — w14, 1) d.'r')
ITex', r)y da'
where xqis the centre-nf-mass of the contaniinant patch.
Richardson' introduced the concept of *distance-
neighhour function’ qi ¥, r). 'This function describes the
distribution of the separation of parlicle pairs in a con-

taminant cloud, or ensemble of clouds. g{e, 1 is nonnulized
st Lhal it becomus a probability density, e

{a)

J-:fi'_v, fdy=1 (7}

where the integration is over all possible values of the
particle saparation y. Considering a continuous distribution
of contaminant, one las:

, S, ey '+, #) do
gly.i)= : - (8]
Thix, ) dx

where T 12 the contaminant concentration, and the integra.
tions are over all space.

Richardson proposed that the dispersion of a contami-
nant cloud could be deseribed by a partial differantial equa-
tion tor the distance-neighbour luncion:

g ; .
el er Vo (1" V,0) (9

where ¢ s 4 constant. On the other hand, Batchelor®
angued that the effecrive diffusiviry should not depend
upon the random separation . but rather upon a statistical
function such as 73 = | p»**2 Thus equation (9) is
changad, to bacame:

aq
dr

where ¢g is another constant.
A solution For equation (9) s

- gy 33
gly, 1y e (epty ﬂ-‘:P[‘( A )] (1)
"-1{'Rf

= cpP*Vig (10)

whereas, for equation (10), the corresponding solutios is
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the Gaussian distribution:

gly, Oye (egey 2 E“'P{{ ':{Eu];: r}s)J i
= B

Ihe validity of equation (2) in two-dimensional tuibulence
i debutable, as the energy spectrum may nat chey the
Kolmogorov &% law. E(k) may be propostional to £
{reference &) or if there is irregular hottom topography, it
may be propertional o &A™ (references 7 and &) or may
have some other wave number dependence. I E(k) = £,
the turbulent dizpersion coefficient will he proparrional to
F2, rather than 72, und ¢ will increase exponentially with
time. If £(k )= & 1, the turbulent dispersion coelficient will
be proporlional o 7, and 7 will incresse linearly with ime,

Modelling turbulent dispersion

The approach adopted by the author in modelling tubu-
lent dispersion is to fry to find a method whereby an indi
vidual patch of conlaminant w followed within 2 single
realization of a turbulent flow. One can then follow, for
example, the simulated track of an individual patch of dye,
or of an ofl slick on the sea surface. Additional elfects, such
as wind- and wave-induced drift or vadarions in the back-
grownd current, should he capable of heing incorporated. 17
ensemble-average statistical quantities are required trom
such & muodel, the simulation can be performed a number
of times,

In principle, it should be possible o solve numerically
the hydiodynamic equations of motion at scales which
resolve turbulent ‘eddies” of sizes comparable with the
initial size of a contaminant patch. Such numerical solu-
tions have indeed been made.” hut for routine situations
they are extremely expensive. Routinely applicable
numerical hvdrodynamic models will resolve the smoath
background variations in the flow field, A practical applica-
tinn of a lurbulent dizpersion madel would be Lo stmulate
metions at scales In the range from the initial size of a
patch of contaminant up to the scale of the background
flow variation.

Befora describing the author’s turbulent dispersion
medel, i 15 wselul o review various methods which have
been used to made] turbulent dispersion.

bddv-resalving numerical models

Asalready mentioned, these models are extremely
expensive fur routne appheation, They are very usefal in
tundamental studies of turbulent motion and turbulent
dispersion, and in investigating ways of parameterizing the
dispersion proecss [or simpler models, whicl in their tuem
can be used routinely,

Uise af the advection-diffiision equation

If the background flow tield Uix, 1) is known, fiom
ebservativng ur by running a numerical hvdrodynamic
madel, values for the mean concentration I'= {T ol a con-
taminant can be found by solving the advection-diffusion
equation:

ar - :
§+ U NI = V- {Dix) NI} (13}
where £2 is a dispersion (diffusion) coelficienl, The diffu-

gion term on the right-hand side of {13) will cavse a small
patch of contaminant to spread with oo« i3,



If another fime dependence [or the spreading is required,
¢ 0= 2 a sspectral diffusion” technique can be used.
The spectral dittusion method replaces the diffusion lerm
by

"F-%J-Di_.x.xa} YT dx"} {14}
with
Dix, ') =I K(k) explik - (x —x")| dk (13)

(Berkuwicz and Prahm'®). K (k) can be of the form, for
example:
K(ky= ———

Br=n (16}
which reproduces equation (4) and 6 = at small scales,
in practice, (13) is salved using a pseudo-spectral technique,
wilh the difTusion term evaluated [n wave number (K) space,
Thus, the integrations in (14} and (15) are not perfonmed
directly . but indueetly via the fast Fourler transtorms used
in the pseudo-spectral method.

The spectral dilTusion method only glves values tor the
average concentration at any point. It reproduces neilher
the greater varialions in concentration expetienced in
tutbulent dispersion, nor the advection of the contaminan|
by motions of smaller scale (o that of the background flow
feld. It is possible to evaluate concentration fluctuations
by solving a partial differential equalion Tur the mean
siquane comeentration Muctuation (I, where I = I

!3.-'.2

1- 11

Adveerion of conramnand pariicles

lnstead of treating the conlaminanl as continuwous, one
miy think ol it as being composed of a number of discrets
particles, which are advected by the background llow. A
patch of contanmant composed of such particles will
spread out under the influence of variations in the buck-
around flow: bur if its initial size 1% much smaller than the
smallest scale of buckground flow variation, it will tend to
spread only very little, This defect may be remediced by
forcing a small patch, or small patehes, of contaminant to
expand according Lo, for example, the g = ¥ or D o P2
law, but it will be difficult, using such a method, to repro-
duce the essential irregularity and ssymmetiy of each
realizalion of the wbulent dispersion process.

Rarwdorr walk methods, Consider a patch compased of a
number of discrete parricles, as described above. 1T cach
particle is allowed Lo be advected by the background flow,
bul additionally allowed to make a small random jump at
each time step, indapendently uf all olher particles and all
other tme sleps, the contaminant patch will spread of irs
own accord. [t is usually sufficient to allow the randum
jumnp to have given magnitudes for its .-, - and 2-com-
pomients (Uhe same magnitude tor each coardinate, or
difterent magnitudes for differsnt coordinates, aceord-
ing ti whether the turbulence is isotiopic o anisotropic),
bul to have random signs. A contaminant pacch will then
spread with o o #2141 s difficult to reproduce other types
of time dependence. It is, however, very easy to allow the
magnitude of the random jumps Lo vary with position,
time, backgiound current ete.™®

Durbin®® developed a ‘random Might’ model for the
ilispersion of pairs of contaminant particles, Far each pair,
twn welooity' time series are constructed, using independent
whitenuise accelerations, and are then multiplisd by fune-
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tions of the particle separation o obtain the centre-oi-mass
velocity and the relative particle velocity.

Tlie functions of the particle separation are chosen to
afve a f1 ey law [or the relative dispersion at small scales.
Bucause pairs of particles are considered, the method is
unable to simulate directly the dispersion of a parch of
contaminant, However, concentration Mueiuations can be
evaluated by considering twu particles close together near
pasition x ul time ¢ and tupning the model hackwards in
lime Lo determine whether each particle was in the initial
contaminant patch, By repeating the process a number of
rfimes, the mean concentration and concenlration vaclations
at point x at time ¢ can be delermined.

Flow field synthesss. Davis'® performed simulations of
the advection of contaminant particles in general flow fields.
[ hese consisted of randomly selected realizations ol juint
normally disttibuted velocity fields constructed from a
lorge number of Fourer components with randomly
selactad wave number &, each of which had wave-hke
propagation, Le, was proportional to exp[i(k -x — cr)]. A
dispersion relation helween & and the frequeney oz was
preseribed for the whole velocity field. Davis’ simulations
were therafore of dispersion by random wave fields rather
than by turbulent velocity fields, as he did nul lake into
account the advection of the small-scale motions by the
largerscale motions,

I order to include this kind ol advection by turbulent
flow fields the model deserdbed in the fallowing seclion was
devised. [t is based on the splitting of the fow field intoa
‘cascade’ of larger and smaller-scale components, and caus-
ing the largerscale components to shear and advect the
smaller-scale components,

Simple random model of the flow field

‘This method was devised for following the movement and
spreading of @ pateh of contaminant in twiedimensional
turbulent flow. It is thus suilable for following, for ex-
ample, dye patches, or oil slicks which have negligible
muation with respect to the underlying wilvr, The fluid
flow {5 assumed for the moment (o be two-dimensional, so
the method i3 valid only for scales much grearer than the
depth of (e fluid. I significant deprh varations are prescnt,
alterations will nead to be mude Lo the part of the method
which iz dependenl upon the two-dimensional continuiLy
cquation, Alterations also need to be maude if regions of
convergent or diverzent Mow e allowed to exist. as in. for
example, Langmuir circulation phenomena,

I'he method is based upon the splitting up of the turbu-
lenl motion into components of different wave number,
spaced exponentially in wave number magnitude. Each of
these different wave number components of the motion has
its pwn characteristic length-scale, vélneity amd Lugrangian
correlation time, and the relationships between these quan-
tittes depend upon the assumed turbulent kinetic enetgy
spectium,

It iz assumed that the lurbulent flow feld i two.
dimensional, homogeneous and isotropie, and abeys the
continuity equation:

dx. oy
Assume [urther that the flow field possesses an energy

{17)
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spectrum of the form:

%<1;:12>=J E(k) dk (18)

0

E(k) = Ak™

where & is the magnitude of the wave number vector k. The
parameter ¥ may be 5/3, as in the Kolmogorov energy cas-
cade spectrum,'® or may take different values, such as 3, for
the enstrophy cascade spectrum,® or 1, as predicted by
Herring” for flow over irregular bottom topography, and
observed by Veth and Zimmerman®

The turbulent flow field is now divided into compo-
nents,'®*” each component having wave numbers in the
range k. > k 2 ky i, kajp > k 2 kg5 ete., with the
K+ (12 In geometric ratio, ky, 12y = Dy 4 12y, fOI
integers m. If the characteristic wave numbers are defined:

b = K —(u2)km -r(1.-'2)_,1'“2 (192)
characteristic length-scales:
L= kLm0 (19b)

characteristic velocities:

Ko — 14 1/2

U ={2A J' e dk}

Km + 1

24 1
:{__ k}n—?’(b('}‘—l)ﬂ = b(l-—T)ﬂ'}}
y—1 ;
for y# 1 (20)

= {24 Inp}"? fory=1

and characteristic time intervals (assumed equal to the
Lagrangian correlation time for each component of the
flow):

T = (Umkm)" (21)
For each component, a velocity field is synthesized:

1, (X) = Re{uy, iy, explilk,, J;‘Jr'n X+ )|} (22)

where i,y and k,,, are randomly directed unit vectors, and
@ is a random phase, uniformly distributed on [0, 27).
The continuity equation (17) requires:

iy ey = 0 (23)

The principle of the method is that contaminant particles
are advected by the component u,, of the flow for a time
T, and that the smaller-scale components operate on the
particles before the larger-scale components. The ratio of
adjacent length-scales, b, is chosen so that T, +1 = 2T,
(or, alternatively, another integer multiple). Thus:

U 41K m +1= TUmKm (24)
from which one obtains:
pB-M2 — 5
$E. (25)

b =267 for v+ 3

If ¥ =3, b = o=, but then T, is found to be independent of
m, it being a function of 4 and b only.
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From equations (20) and (21) the following are obtained
fory#1,vy#3:

24 V2
y o :(__- 1) b()‘—1)14(1_bl—T)—l.fﬁk;(ﬁ—T)ﬂ (26)

Hence:

2412 —2/B~7)
kn: :{( e l) b(‘)‘— I};d{l_bl_ ']r‘}l_."E Tn]} T

(27)
and u,, can be evaluated from (21).
If one now starts from time zero with a patch of con-
taminant particles with coordinates x;(0), their positions
at time n7T"; are determined by the following procedure.
Define the ‘pseudo-position’ x;(T) by:

x{(T1) =x40) + uf {x(0)} T, (28)

where ul, u'? etc. are realizations of the velocity field

u,y,, defined in equations (22) and (23) with independent
values of the random wave number-directions k,,, and
phases ¢,,,. From each set of pseudo-positions x;((p — 1) T,)
the next set of pseudo-positions xj(pT7) is obtained by
advection by the velocity field u{P) first, then u{P/2),

ulP/? ete. in succession, terminating with: i

(pf2e-1
ug )

where:
p=0(mod29-Y) p#0 (mod29) (29)

or the largest scale velocity field u}f’ﬂ‘[’ “DirosL.

The reason that the smaller-scale components operate
first is that in general the time-scales T, are shorter for the
smaller-scale components. Thus, within the time interval
in which one random realization of a large-scale com-
ponent acts, there will be many successive operations by
independent realizations of a small-scale component. If
one were to operate with the larger-scale components first,
one would be unable to simulate the effect of the advection
of the smaller-scale components of the velocity field by the
larger-scale components.

The pseudo-positions x}{_pTi) do not, however, contain
the effects of advection by motion at scales larger than
lo = 1/kg, where Q is defined in (29). To obtain the actual
simulated positions for times not equal to an integer
multiple of the largest characteristic time scale Tz, one
needs to operate on the x}(p?"l) with the velocity fields
Up+1s U s .., #y, taking into account the fact that
these velocity fields will only operate for the appropriate
fractions of the time scales Tg+y. Tp+42, ..., T

The above procedure can be expressed in terms of
successive applications of advection operators afu, T},
where:

afu, Trx=x+ulx)T (30)

The procedure for advection by the simulated turbulent
flow is as follows:

(1) x(T))=alul), T,}x,(0)
@ xeTy=auPf O el 1,_3
oo aful?, T)xi(p — 1) Ty) (31)

where A is L or the greatest integer such that p is divisible
by 22— 1 whichever is the smaller.



xj(pTy) if p is divisible by 2!

3) x{(pTy)= afufD Ry T}elufLV, Ry T} (32)
. afu D Ry LTy xj(pTy) otherwise

where I, is the integer part of p/2°~ !, and R; is the
remainder after p is divided by 25— L

It should be noted that since the values of k,,, and ¢,,, at
successive Ty-intervals are independent, the value of u,(x)
will change after time steps which are integer multiples of
T,,. This will cause kinks to appear in particle paths at
intervals of 2" ~ 17, the kinks in general becoming
stronger for larger values of m. It may perhaps be possible
to eliminate the kinks by performing some kind of
smooth interpolation between the values of u,, at succes-
sive T}, intervals.

In principle, it is possible to construct a simulated turbu-
lence field using distortions at different scales which are
different from the sinusoidal distortions given by (22),
(23) and (30); for example, one may try to simulate the
distortions caused by circular eddies. If the continuity
equation is to be obeyed, the advection operators & must
preserve the Jacobian, i.e.:

d(ax) _d(ax), d(ax), d(ax), d(ax),
ax)  ox ay ay ax

1 (33)

Computer simulation

For the computer simulation of two-dimensional turbulent
dispersion, a zero mean flow has been assumed, with a
turbulent energy spectrum given by:

E(k)= 0.5k N E

The characteristic time interval 7'; of the smallest scale
component was taken to be 1.0 units, and the largest scale
characteristic time interval, T, was 32 units. The corre-
sponding length scales /, and /g are given by:

{m = (31:'32-1#4/_11;2 Tm):i.rz = (103 Tm)arz (35)

(from (27) and (34)). Hence the smallest length-scale /; =
1.05, and the largest length-scale /; = 189, If the propor-
tionality constant 4 in the energy spectrum is changed
from its value of 0.5 in equation (34), this will alter each
1, as a function of the T),,: the length-scales will increase as
A increases.

Figure I shows the movement of the centre-of-mass of a
patch of contaminant containing 80 particles, initially
circular with diameter 10 units. Figures 2 and 3 show the
evolution of the patch itself, at twice the scale of Figure 1,
with the centre-of-mass of the patch as origin. In Figures
2b, 2¢ and 3, the patch shows irregularities at both large
and small scales — this phenomenon is to be expected if the
patch is advected by turbulent motions. If each particle in
the patch were to move independently of all the others, the
general shape of the patch would be expected to maintain
the initial circular symmetry.

Figure 4 shows the evolution with time of the ensemble-
average variance of the contaminant patch:

1
()N = = ); Lx(t) — xo(0))?

for0<¢<400 (36)

Turbulent dispersion simulation: A. D. Jenkins
96

192

288

: L, =189

Figure 1 Movement of centre-of-mass of a patch of contaminant,
initially circular with diameter 10 units, during 320 unit time steps.
The size of /,, the largest length-scale of motion, is marked; the
largest time-scale, T, is 32 units

. fal t=0
- {b) t=86 units
‘."'
. e} t=32units
oy
o e

. L, =189 :

Figure 2 (a), Initial contaminant patch; (b}, contaminant patch at
t=6; lc), contaminant patch at t= 32; scale is twice the scale of
Figure 1

where the summation is over all particles, V is the total
number of particles, and x is the centre-of-mass of the
patch. The ensemble-average is taken over 15 simulation
runs with 80-particle patches as in Figures 1-3. The straight
line is obtained by a three-parameter nonlinear least-squares
fit, minimizing the quantity:

225

2

=11 T Iy

[In ¢a®())— ¢ In(t + t5) — InC]? (37)

with respect to #, § and C, i.e. the straight line represents:
(o) =C(t + to)* (38)

The computer simulation was performed on the Honeywell
66 installation at Aberdeen University, the 15 simulation
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Figure 3 Contaminant patch at t= 128 (scale as Figure 2)

(0] 1 T I Y | i i1 11l L ot g sl
1 10 100 1000
t+13.25

Figure 4 Plot of ensemble-average variance of contaminant patch
{15 simulation runs) against (time +t,) — least-squares fit to straight
line 0*=Clt+ tulf. with C, t,, ¢ as adjustable parameters

runs with six scales of motion and 80 particles taking a
total of approximately 10 min of CPU time. The computa-
tional algorithms were not optimized for fast running, so
there is the prospect of a considerable reduction in run
time.

The cut-off limit r = 225 was chosen because if a larger
upper limit were used (say ¢ = 400), (6>)"? would become
much greater than /g, the largest scale characteristic of the
turbulence, and the theoretical power law o o (¢ + )2
would not be valid. It can be seen that the graph of (¢*)
departs considerably from the straight line predicted by
(38) for large values of ¢,
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In Figure 4, it is seen that 1;=13.2, { =3.1and C =
4.6 x 107*. When further simulation runs were performed,
the value of the exponent ¢ ranged from 2.4 to 3.2; a con-
siderable variation. From this one can say that the results
of the simulation are not inconsistent with the ¢« /?

(o = 1*?) law, but that for a small number of runs, the
results show considerable variation. Certainly, a time
dependence completely different from o o« 12 is pro-
duced. It is interesting to note that Okubo’s'® survey of
oceanographic field observations gives a value of the
exponent { equal to 2.34, close to the lower end of the
range given by the computer simulations.

A version of Richardson’s distance-neighbour function
was also calculated, using the computer simulation method
on an ensemble of 900 particle pairs. each separated initially
by five units. A probability distribution was obtained for
the particle separation y = | y|, with probability density
function:

2
1
SO, )= = J‘ g((v cos@, ysinf), t) df (39)

o]

where g(y, t) is the distance-neighbour function defined
earlier (equation (7)). The Richardson and Batchelor
asymptotic expressions (11)-(12) for the distance-neighbour
function become:

. 20y { 60y? “3} -
£ty = expy —
e (uﬂ(m)
and
S Y= { L (41)
), 1= expi —
0D =5 P (}’2(1‘))}

where the time evolution has been incorporated into the
ensemble-averages { v(£)).

Figure 5 shows the evolution of S(y, t) with t = 1,
t = 8 and ¢ = 64. In each case, the horizontal axis is scaled
so that (¥*)/2 = 1. On this scale, the distribution for ¢ > 64
does not change in form, i.e. by the time ¢ = 64, an
asymptotic form for the distance-neighbour function has
been reached. The Richardson and Batchelor expressions
are shown in both figures, and it can be seen that the

0.251

a FEd

Figure 5 Two-dimensional radial distance-neighbour function
Sly, t) for 800 simulation runs of particle pairs, Horizontal scale,
1.0 =one standard deviation; triangles, t= 1; crosses, t=8; circles,
t=64. Continuous curve, Richardson expression; dotted curve,
Batchelor expression (two-dimensional radial Gaussian)



Richardson expression appears to be a better approxima-
tion to the asymptotic distance-neighbour function. This
result is in apparent contrast to the experimental observa-
tions made by Sullivan'®; however, inspection of Sullivan’s
results does show a distance-neighbour function which is
intermediate between the Richardson and Batchelor expres-
sions.

Conclusions

The simple random model of turbulence described in this
paper, based upon the idea of exponentially dividing the
length- and time-scales of the turbulent motion, appears to
provide a realistic means of simulating two-dimensional
turbulent dispersion. If the Kolmogorov &°'? energy spec-
trum is assumed, the ¢ & 3 power law for turbulent
dispersion is obeyed approximately, and the Richardson
asymptotic form of the distance-neighbour function is
produced. The model is capable of being modified to fit
other turbulent energy spectra, and it should be possible to
extend the model to three dimensions, and to apply it to
situations where the turbulence is inhomogeneous.
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Nomenclature

A constant

b ratio of adjacent characteristic wave numbers

B constant

(& constant

CR constant

C estimated dispersion intensity

D dispersion coefficient

E(k) turbulent energy spectrum

i o

I integer part of p/(2* ™1

k wave number vector in Fourier decomposition of
velocity field or other spatial field

k modulus of wave number vector

ko mth characteristic wave number

K random unit vector

K(k) spectral dispersion coefficient

Ka constant

L index number of largest scale of motion

4 mth characteristic length-scale

P an integer

g(y,t) Richardson’s distance-neighbour function

O an integer
R remainder after p is divided by 25~

S(y,t) probability density function for particle separation
Sgly, t) Batchelor’s expression for S(y, 7)

Sg(y,t) Richardson’s expression for S(y, )

s an integer

t time

to estimated power law dispersion time origin offset
Ton mth characteristic time interval

U background flow-field velocity (deterministic:

FUTQUIENIL GISPENSfON ol fILialidrs. A, L. JCHRTTo

obtained from observations or a deterministic

model)
u velocity vector (general: can be deterministic or
random)
Upm mith characteristic velocity
Uy, random velocity field at scale m
uy, largest-scale random velocity field
&y random unit vector
ulp) pth realization of random velocity field at
scale m
x, x! position vectors
Xy centre-of-mass of contaminant patch
xi-{'r) position of the jth particle at time ¢
xi(t) pseudo-position of jth particle at time ¢
y particle separation vector
y Il
y (y V2
afu, r}  advection operator
Y energy spectrum exponent
r contaminant concentration
r mean contaminant concentration
o concentration fluctuation
€ turbulent energy dissipation rate
¢ estimated dispersion exponent
0 an angle
A an integer
o standard deviation size of a contaminant patch
b random phase
w frequency
Vv gradient operator
V- divergence operator
Vi horizontal divergence operator
Y gradient operator in y-space
(ay,ay) two-dimensional vector a
() ensemble average
[0,27) interval 0< ¢ <2
ay, a, ete. x-, y- etc. components of vectora
d G ]
a-V B Ty e
ax ay 0z
¢=0(modd) ais divisible by b
a¥ 0 (mod d) ais not divisible by b
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