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ABSTRACT

A simplified model is described for wave generation and air-sea momentum flux. The model is based upon
the quasilinear theory employed by Fabrikant and Janssen, in which the mean flow is approximated to second
order in the wave amplitude and fluctuating quantities are approximated to first order. The wave generation
rate is computed using Miles’ wave generation theory and the numerical method of Conteand Miles.

The computationally expensive iterative procedure used in Janssen’s quasi-linear model is avoided by specifying
in advance the vertical wind velocity profile as a combination of a logarithmic profile above height z = z, and
a square root profile below that height, z, being given by U(z,) = c(k,), where U is the wind velocity, &, is the
wavenumber at the peak of the wave spectrum, and c(k,) is the associated phase speed. In contrast to Janssen’s
model and his subsequent simple surface-layer model, no explicit surface roughness parameter is specified: the
whole of the applied wind stress is assumed to be taken up by waves with the simple one-dimensional energy

- spectrum E(k) = (1/2)apk™? for wavenumbers k between k, and oo, E(k) = 0 for k < k,. The square root
part of the velocity profile is derived by assuming that the form of the sea surface is stochastically self-similar,
and that the velocity profile is also self-similar. A self-similar velocity profile requires kz.(k) to be independent
of k, where U[-,(k)] = c(k).

The model gives a rather crude approximation to the wave generation rate. The quantlty o En(k)/E(k),
where ¢ is the wave angular frequency and E;,(k) is the rate of wave energy input, is independent of k for a
spectrum of the form E(k) «c k73, It is proportional to (U, /¢,)?% if the Phillips parameter ap is constant and
10 (Uy/c,) ' if ap o (c,/ U, ) ™%, where U, is the friction velocity and ¢, = ¢(k,).

Air-sea momentum flux, as descnbed by the drag coefficient Cp(10 m) = [U,/U(10 m)]?, is represemed
rather better. For wave age ¢,/ U, above 5-10 it decreases with increasing wave age if U, is kept constant. The
predicted drag coefficient, however, tends to decrease more rapidly with wave age for the older wind seas than
field measurements indicate [if we assume ap oc (c,/ U, )™*/?]. For very young seas with ¢,/ U, < 5, the drag
coefficient increases with wave age. The model predicts a significant variation of drag coefficient with wave age
even when ap is constant. For sea states so “old™ that z, > 10 m, the wind speed depends just on ¢,/ U,, and
Cp(10 m) increases again with wave age. This last, counterintuitive situation will be modified if we allow more-
of the air-sea momentum flux to be supported dxrectly by turbulence. -

1. Introduction ' is negative at = = z,, the resonance process will induce
air pressure fluctuations at the water surface with a
component in phase with the surface slope, which will
transfer energy into the waves and tend to make them
grow, by the mechanism of Jeffreys (1925). For ran-
dom waves with a continuous spectrum, the wave-
mean flow resonance will occur over a range of critical
levels, corresponding to the range of phase speeds of
the Fourier components of the wave field.

The resonant interaction of gravity waves with a

" plane-parallel flow according to the theory of Miles
(1957) is a commonly accepted mechanism for the
generation of waves by wind. Resonance occurs at a
so-called “critical level”—at a height z = z. where the
wind speed U(z.) is equal to the phase speed ¢ of the
waves. [If the wind direction is at an angle 6 to the
direction of wave propagation, the resonance condition
becomes U(z,) cosd = c¢.] If the curvature of the wind

velocity profile, a. Consistent treatment of wave generation and

momentum flux
o d*U/dz? 1 The Miles (1957) theory is linear, in that the surface
i =i RUSS ( (dU/dz)?’ (1) pressure fluctuations, and thus the wind-to-wave energy
flux, are directly proportional to the wave amplitude.
— . Waves of finite amplitude a are associated with a mo-

mentum proportional to a*. If wave-mean flow res-
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wind velocity profile. Thus, the air-sea momentum
flux, and consequently the effective drag coefficient,
will depend on the wave conditions, as observed by
Donelan (1982).

A consistent theory of the two-way interaction be-
tween the wave field and the wind profile must be non-
linear, so that it takes account of the O(a*) wave mo-
mentum. Fabrikant ( 1976) presented such a consistent
theory, making use of the mathematical similarity be-
tween the Miles (1957) wave-mean flow resonant in-
teraction and Landau’s (1946) theory of the interaction
of plasma waves and charged particles. Fabrikant’s
presentation assumes that a random phase approxi-
mation can be used to describe the wave field, and uses
the quasi-linear approximation, in which O(a) and av-
erage O(a?) quantities are taken into account, but
fluctuating O(a?) and higher-order quantities are ne-
glected. His basic result is that the wind velocity obeys
a nonlinear diffusion-type equation” (neglecting vis-
cosity and turbulent Reynolds stresses):
3*U
ot D(a, Uy ;7 -
The wave diffusion coefficient D at a height z is pro-
portional to the squared modulus of the Fourier coef-
ficient Xx(z), at wavenumber k, of the velocity stream-
function (or of the vertical velocity component), where
kis given by c(k) = U(z), assuming for simplicity that
the waves are unidirectional. The streamfunction Fou-
rier coefficient is in turn found by solving the Rayleigh
equation, which appears in the Miles (1957) wave gen-
eration theory:

5 2 2
U= e(k)] (‘5—’-‘2—“— klxk) =0 3

dz dz-
For time ¢ = oo, the velocity profile tends to a linear
profile for heights z where the value of the wave energy
spectrum E(k), with k given by c(k) = U(z), is greater
than zero. Since the curvature y is then zero, there
will then be zero energy flux from the wind to the
.waves. -

Janssen (1982) derived (2) using multiple time scale
analysis. For the inviscid stationary state, where the
wind velocity profile is linear, he found that the wave
energy spectrum E( o) became proportional to ¢ ~*for
deep-water gravity waves with dispersion relation ¢
= gk, where ¢ is the wave angular frequency, and g is
the acceleration due to gravity. This corresponds to a
spectr;x/m in terms of scalar wavenumber, E(k)
oC k- z.’

Janssen (1989) added viscosity and a Prandtl mixing
length turbulent Reynolds stress term to the diffusion
equation (2) in order to calculate wave generation rates
and wave-induced drag coefficients over a sea surface
with JONSWAP-type (Joint-North Sea Wave Project)

wave spectra. If the time derivative term is neglected.—

~ {2) can then be written as -

d au + oz _
= (pv e .(2) + Tw(Z)> =0,
where v is the kinematic molecular viscosity of air, p
is the air density, 7, = p(xz)*|dU/dz|dU/dz is the
turbulent Reynolds stress, k =~ 0.4 is von Kirman’s
constant, and 7,(z) = — [ dz'D(Z, U)d*U/dz"* can
be termed the “wave stress.” Janssen (1989) solved
iteratively by finite differences a coupled system of 26
ordinary differential equations—Eq. (4) plus a Ray-
leigh equation of the form (3) for each of 25 wave
Fourier components. The computation was expensive:
it was necessary to use 10 000 grid points for (4) in
order to calculate d?U/d=? sufficiently accurately. For
the purpose of incorporating the effect of ocean waves
in numerical atmospheric models, Janssen and his col-
leagues later employed simplified parameterizations
(Janssen et al. 1989; Janssen 1991). The parameter-
ization employed by Janssen (1991) assumed that al-
though the waves affected the wind velocity profile, the
shape of the profile remained logarithmic.

Jenkins (1992) produced a quasi-linear model that
took account of viscosity and air turbulence in the
wind—-wave interaction equations as well as the diffu-
sion equation. The critical level for resonant interaction
of each Fourier component was then effectively re-
placed by a broader zone, and only 100 grid points
were required for reasonable accuracy. The compli-
cated nature of the model equations resulted in slow
convergence (typically, 1000 iterations were required).

A more direct approach to the wind-wave interac-
tion problem is to solve the fully nonlinear hydrody-
namic equations directly over a time-varying ocean
surface, using a suitable turbulence closure scheme to
account for subgrid-scale motions. This was performed
for simulated continuous wave spectra by Chalikov
(1978, 1986a,b), Makin (1980, 1982, 1987), and
Makin and Panchenko ( 1986): the great computational
expense of such a model is obvious. Chalikov and
Makin (1991) also presented a simplified model of
wind-wave interaction, based on the results of their
previous computations. They assumed that the wind
velocity profile was composed of two pieces, both log-
arithmic in form, with a discontinuity in the velocity
gradient at a level that depended on the dominant
wavelength of the surface waves.

(4)

b. Surface roughness

The models of Chalikov, Makin and Panchenko,
Janssen (1989), and Jenkins (1992), which take ac-
count of atmospheric turbulence, all employ a surface
roughness parameter z,. In the absence of waves and
neglecting molecular viscosity, these 1models produce
a logarithmic wind velocity profile,

- ._
- U(z) =—K’ilog::-,

(5)
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where x =~ 0.4 is von Karmén’s constant, U, = [1,(c0)/
p]'/%is the friction velocity, and z, is equal to the aero-
dynamic roughness length z, under these conditions.
For neutrally stratified turbulent flow over a solid
boundary, the roughness length is found to be propor-
tional to »/U, if the boundary is smooth, and it is
more or less proportional to the size of the roughness
elements if the boundary is rough. For a water surface,
the situation is more complex, because the capillary
and gravity waves, which can form the roughness ele-
ments, are moving and are also influenced by the air
motions. Nevertheless, if the velocity profile is ap-
proximately logarithmic, it is possible to determine z,
by curve fitting. :

There is a diversity of opinion in the literature about
how to describe the aerodynamic roughness of the sea
surface, and on the equivalent question of what types
of surface irregularity support the air-sea flux of mo-
mentum. The alternatives can be (i) the momentum
flux is supported by flow separation from short-waves
in which capillary forces are important, in a narrow
band of wavelengths, (ii) the momentum flux is sup-
ported by a wide band of wavelengths, for the most
part long gravity waves in which capillarity is insignif-
icant, (ii1) it is supported by flow separation from rel-
atively long gravity waves with a narrow band of wave-
lengths, or (iv) the sea surface is aerodynamically
smooth, with roughness length of order v/ U,.

Alternative (i), that momentum flux is supported
by short waves with a well-defined wavelength, is ar-
gued for by Csanady (1985, 1990), based on laboratory
observations of flow separation above waves and of
large fluctuations in shear stress at the water surface
(Okuda et al. 1977; Kawai 1981, 1982). Csanady’s
mechanism is associated with a balance between energy
input to the wavelets by a fluctuating shear stress cor-

—elated with the wave orbital velocity, and wave dis-
sipation by vortical motions (turbulence or wave

- breaking). This mechanism can in fact be scaled up
to longer gravity waves, so that we approach alternative
(iii), suggested by Stewart (1974), where most of the
momentum flux is supported by the dominant wave
component of the sea state, as deduced by Hsu et al.
(1982) from laboratory measurements by Wu et al.
(1979) combined with a nonlinear theoretical model
developed by Yuen and Lake (1979). This is supported
by the laboratory experiments of Banner (1990a) on
airflow and pressure fluctuations over breaking and al-
most-breaking gravity waves, where the correlation be-
tween pressure and the surface slope of the wave ac-
counts for between 0.75-and 0.86 of the total momen-

.- tum flux: Of course the balance of the momentum flux
-will have to be taken up by shear stress fluctuations at
the dominant wave scale, by shorter waves, or by a
laminar boundary layer, of which the last twe-contri-
butions-can be described by a roughness parameter z,.

We should be cautious in interpreting the results-of
laboratory experiments-as being representative of con-

ditions over the real ocean. The laboratory experiments
quoted here are for rapidly growing waves with a non-
dimensional wave age ¢,/ U, in the range 0.3-2, where
¢, is the phase speed of the dominant wave component.
Field measurements for wind waves in the open ocean
give values of ¢,/ U, that are usually between 7 and
25, so there is virtually no overlap in this parameter.
Field and laboratory measurements will thus be for
waves of quite different shapes, since wave steepness
decreases with wave age. Also, the small scales of lab-
oratory experiments Thean that the effects of surface
tension and molecular viscosity will be more notice-
able.

Some authors have modeled the airflow over waves
using a z, that is allowed to vary during the wave cycle,
being generally greater at the wave crests than in the
troughs (Al-Zanaidi and Hui 1984; Chalikov 1986b;
Chalikov and Makin 1991; Maat and Makin 1992).
This behavior is inherent in the turbulence closure
techniques used by these authors, and appears to give
good results when modeling flows over breaking waves.

Banner’s ( 1990a) expertment was with waves offixed
form running against a water current. In the field, the
wave spectrum will be much broader and the surface
will not be stationary in any reference frame. His ex-
perimental results would also be consistent with alter-
native (ii), where the momentum flux is supported by
a broad spectrum of waves. Donelan (1990, p. 267)
has commented, “Field experiments ... have so far
managed to explore [the momentum flux to wave
components in] only the region near the peak [of the
spectrum].” Many authors have supported the idea that
momentum flux is supported by both long and short
waves (e.g., Stewart 1961; Kitaigorodskii--1973: Do-
nelan 1982; Wu 1986; Janssen 1989; Nordeng 1991;
Jenkins 1992; Chalikov and Belevich 1993). Usually,
a roughness parameter is used to describe the momen-
tum flux to the short-wave part of the spectrum: Ki=
taigorodskii ( 1973) and Nordeng (1991 ) extend its use
in a uniform manner to the whole spectrum by allowing
the roughness elements of different scales to move with
the appropriate phase speed.

If a roughness parameter is used to account for the
effect of short waves, a Charnock-type formulation,

z, = acU%/g, (6)

has been used by, for example, Janssen (1989). Strictly
speaking, z, should be used rather than z, in the pre-

"ceding expression since Charnock (1955) introduced

his formulation to account for the behavior of the
overall drag coefficient. Janssen (1989) uses Garratt’s
(1977) value ac = gz,/ U3 = 0.0144, obtained from
a review of field observations. However, a later analysis
by Wu (1980) gives a="0.0185, so Janssen’s use of
a somewhat lower value to-account for the unresolved
roughness elements alone may perhaps be justified. In -
any case, the numerical modeler is faced with a di-
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lemma: he or she is required to make a rather arbitrary
decision as to how to describe the effect of short waves
and other contributions to the total drag not accounted
for in the main part of the model.

In the model described in the present article, I treat
the whole wave spectrum in a uniform manner. How-
ever, instead of assuming that the wave spectral com-
ponents act as roughness elements in a classical tur-
bulent boundary layer, I assume that they extract an
amount of momentum from the mean flow equal to
the amount that they require for their own “wave mo-
mentum,” as they extract energy from the wind by the
mechanism postulated by Miles (1957). This is a rather
“extreme” treatment of the dilemma described in the
previous paragraph: the whole of the momentum flux
is assumed to be supported by surface gravity wave
generation. )

¢. Brief description of simplified model

As has been indicated in the previous sections, this
paper attempts to address two of the problems en-
countered in the models of Chalikov and Makin (e.g.,
Chalikov 1986b), Janssen (1989) and Jenkins (1992):
(1) computational expense and (ii) the specification of
a surface roughness parameter. The roughness param-
eter problem is dealt with by neglecting surface tension,
so that we have pure surface gravity waves, and assum-
ing that the Miles (1957) wave-mean flow resonance
mechanism operates to arbitrarily small wavelengths.
The wave energy spectrum in the high-frequency tail
is assumed to be

E(k) = 5 apk™, (7)
where the exponent (—3) is consistent with the ster-
eophotographic wave measurements of Banner et al.
(1989). This can still be in agreement with a frequency
spectrum E( ) oc o ~*if we allow for the Doppler shift-
ing of short waves by the orbital motions of longer
waves (Banner 1990b). The Phillips parameter ap is
allowed to vary, depending on wave age c,/U,. For
simplicity, the waves are assumed to be unidirectional
and E(k) is set to zero for wavenumbers less than that
of the spectral peak, k,. Neglecting molecular viscosity,
we assume that at the sea surface (now z = 0, not z
= z,) all the air-sea momentum flux is carried by the
wave stress, that is, 7,,(0) = 7,(c0) = pU?%. Wind-wave
resonant interaction will occur at critical levels { z.: 0
< z. < z,}, corresponding to co > k > k,. The mech-
anism described here only takes account of the mo-
mentum flux to surface gravity waves. In addition, we
assume that the system is in a nearly stationary state:
although the wave field can change slowly with time,
as energy is fed into it from the wind, we assume that
this change is on-a much longer time scale than the

- response time of the atmospheric boundary layer.
The computational expense is reduced by specifying
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the wind velocity profile in advance, rather than by
determining it iteratively. We assume that for all Fou-
rier components of the wave spectrum, the ratio of the
critical height to the wavelength is constant, that is,
kz.(k) is constant. For deep-water gravity waves, this
means that U(z) o z'/2 for z < z,, and that r,, de-
creases linearly from pU2 at z = 0 to zero at z = Z,.
Equation (4) is satisfied by letting 7, increase linearly
fromzeroatz=0topU2 atz = z,, becoming constant
for z > z,. For the purpose of solving the Rayleigh
equation (3), the square root profile of U(z) is assumed
to extend to z = oo, whereby it suffices to solve (3)
for a single Fourier component only, the solutions for
the other wavenumbers being obtained by a simple
scaling procedure. The square root velocity profile
combined with a k™ wave spectrum can be regarded
as having “self-similar” geometry. Finally, in calculat-
ing the drag coefficient, the velocity profile is made
logarithmic for z > z, (with a continuous gradient at
z = z,), consistent with usual constant-stress turbulent
boundary layer theory. The inconsistency between the
square root “Rayleigh equation” profile and the log-
arithmic “drag coefficient” profile is the price to be
paid for the inexpensive computation.

2. Mathematical formulation

a. Self-similar sea surface geometry and velocity
profile

We shall assume that the sea surface displacement
n(x, t)is given by random superposition of many long-
crested deep-water linear gravity waves propagating in
the positive x direction:

2x, 1) = Re 3 i k>0,  (8)
k

where the Fourier coefficients 7, are independent ran-
dom variables with complex normal distributions, ¢
= (g/k)'/* is the appropriate phase speed, and “Re”
gives the real part of a complex quantity. The spectrum
of the sea surface variance (energy spectrum, power
spectrum, wavenumber spectrum) E(k) can be defined
by its integral over intervals [k, k>]:

£

kE€(ky,ka)

k2
|ﬁk12>=2fk E()dk, 0<k <k, (9)

where (- denotes an ensemble average or the math-
ematical expectation. The integral of E(k) over all
wavenumbers gives the variance of the sea surface dis-
placement,

fm E(k)dk = (n2) = (h)z
0 7 4

H o being the significant wave height.

It is common to assume that the high-wavenumber
tail of the oceam—surface gravity wave spectrum-is of
the form '

(10)
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E(k) ~ Bk;**?k~, (11)

where p and § are dimensionless parameters, and k,, is
the wavenumber at the spectral peak, where E(k) has
its maximum value. The sea surface generated with
this type of spectrum, when viewed at length scales L
< k;', is statistically self-affine (Mandelbrot 1983,
chapter 39). Using (11), (9), and (8), we can see that
if we multiply the horizontal dimensions by a factor
r. and the vertical dimensions by a factor r.
= r P12 we obtain a new sea surface that looks sta-
tistically identical to the old one at such small scales
(Glazman 1986; Glazman and Weichman 1989). If p
= 3, corresponding to Phillips’ (1958) equilibrium
spectral range, we have r. = r, and the sea surface is
statistically self-similar, so that the small-scale structure
appears (statistically ) unchanged under a simple mag-
nification or reduction. ER——

That the sea surface form may be (statistically ) self-
similar for E(k) oc k> suggests that other aspects of
the wind-wave system may be self-similar as well. Spe-
cifically, the wind velocity profile U(z) may have a
self-similarity property when observed in conjunction
with the sea surface. This will be the case if, for each
wavenumber &, the relevant critical height z.(k) is a
constant multiple of the inverse wavenumber k', that
is, kz.(k) = const = K. This means that

e\
U(z)=c(Kz™") = (%) PR

that is, the wind velocity has a square root profile. Al-
though this profile is different from the generally ac-
cepted logarithmic profile, it shares the property of
negative curvature. Since wind-wave resonant inter-
action will disappear for z > z, = z.(k,), we can expect
a transition to a logarithmic profile above z = z,.

For the simplified model presented here, we shall
use the simple wave spectrum [cf. Kitaigorodskii 1973,
Eq. (2.27); Nordeng 1991]

k — oo,

(12)

O)
1 a3
2 :

The wind velocity is specified by (12) for z < z, = K/
k,, and by a logarithmic profile for z > z,, the wind
velocity and its gradient d U/ dz being continuous at z

=z,

- k <k,
E(k) = (13)

ky<k<co.

(g/K)'"?z'?, O0szs<g,
U(z) = § &+ (Us/x) log[(z = 21)/(2, — 21)],
z,<z< o0, (14)
where ¢, = (g/k,)"/? and )

, QU
% —z,,( R ) (15)
P

Figure | shows an example of such a velocity profile.”
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FIG. |. Example of the wind velocity profile used in the simplified

“™Model, for K= 0.15 and ¢,/ U, = 12.89, showing the square root

and logarithmic sections.

b. Wave generation

According to Miles’s (1957) theory of wave gener-
ation, the rate at which energy is transferred from the
wind to waves of wavenumber &, p.gEi.(k), is given
by

Ein(k) - 4

mik(O),
E(k)  pug

Tk

d'U/dz‘] 16)
| z=zc(k)

p. being the water density, jr(0) being the Fourier
coefficient of the sea surface pressure at wavenumber
k, and “Im” denoting the imaginary part. The quantity
Xy is the Fourier coefficient of the vertical velocity
component at wavenumber &, normalized so that X,(0)
= | and Xx(c0) =.0Q. It satisfies the Rayleigh equation
(3) (cf. Janssen 1982, 1989). For the square root ve-
locity profile in (14), extended above z, to apply for
0 < z< o, (3) becomes

X,
a5

S 2
rpwcuo[ml e

g—-3/2
457 = 1)

where the k subscript has been dropped, ¢ = z/[z.(k)],
and K = kz.(k). Equation (16) becomes

p_wEm(k) L Figrsi]
0 O'E(k) 2 |xcl K ’

-K*x =0, (17)

(18)

where Xe = Xe(z:).

Since K is independent of k for a square root vcloc1ty, g

profile, we thus need only solve the single ordinary
differential equation ( 17) in order to determine Ei,(k)/
E (k) for all k-Fhis is done using the method of Conte.
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and Miles (1959), after transforming the independent
variable in (17) to £ = {'/%:

1ax [;
£dtE [HE-1)
This equation has regular singularities at £ = O.(the
sea surface) and £ = 1 (the critical level). About £ = 0,

the solutions to the differential equation can be ex-
pressed as power series:

dt?

- 4K2.52]x =0. (19)

X=A01(52+%f3+ § "),
_15(K*+7KY)
2(45 + 23K?)
_ 5(K*+7K%)
2(45 + 23K?)

About the critical level, one of the solutions, X,, can
be represented by a power series, but the expansion of
the other solution, X,, involves a logarithm:

X=Aoz[1“5

2+ ] (20)

x1=A“[(s—1)+§K2<s—1>3+---], 21

= {A!Z(Xl log|& — 1| + X3), £§>1 (22)

Ap[X(logl¢ = 1| —im) +X3], §< 1,

where X3 = —1 — 2K2(£ — 1)2 = (20/9)K*(§ — 1)?
+ - ... The term —iw, which appears in (22) for £
< 1, is a consequence of the fact that the path of in-
tegration of (19) must pass below the singularity at &
=] (Tollmien 1931; Lin 1955). The symbols Ay, 4oz,
Ay, and A,, are arbitrary constants.

As in Conte and Miles (1959), the power series so-
lution X, and the logarithmic solution X, were both
determined by numerical integration from just above
£ = 1 to some suitability large value of £, using a fourth-
order Runge-Kutta technique. An initial value of ¢
=1+4¢ ¢e= 10"*, was used, the results being checked
for accuracy by repeating the integration for e = 1077,
The initial value of X, and X, were specified to O(e)
and their derivatives to O(1).

" The integration steps were made variable, increasing
in geometric ratios of approximately 1.1 from an initial
size of ¢ until a suitable small constant value was
reached. At the upper limit of integration, X, and X,
were added together in such proportions that their sum

-was equal to zero, thus satisfying approximately the
boundary condition X(co) = 0. The combined solution
- was-then integrated downwards from £ = 1 — e to &

© =0 + ¢, using steps that increased geometrically and

.then decreased geometrically as the lower limit was
approached. As before, the initial value was specified
to O( ). After the integration was completed, the result
was scaled so that x(0 + ¢) = 1, satisfying approxi-
mately the lower boundary condition for X. For 0.01
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< K < 10, the real and imaginary parts of X, never
varied by more than | in the fourth decimal place when
¢ was changed from 10™* to 1077,

¢. Wave and turbulent stresses

The downward momentum flux due to wave-asso-
ciated motions is equal to the wave stress 7,,, which
satisfies
d*U

g2’
where the wave diffusion coefficient D is given by
D(z) = 2mck?|X|*E(k), c(k)=U(z), (24)

(Fabrikant 1976; Janssen 1982, 1989). Using (16),
some algebraic manipulation shows that the change in
7., at a critical height z.(k) is equal to the flux of mo-
mentum to the appropriate component of the wave
spectrum, (p.g/c)Ein(k), that is,

d'rw - pngin(k) rdzc(k) =
dz.(k) ck)y | dk |-
If we use the wave spectrum ( 13) and the wind profile

(14), dr,./ dz becomes constant and negative for z < z,,.
Setting 7, (c0) = 0, we have

dr,,

o =

(25)

Ui[l = (z/z,)], O0<z<:
Tw<z>=[p o ’(26)
0, Z2Zp,
with
U2*=%7!’(XPK-‘C5IX_CI_2;'. (27)

The wave stress 7,, decreases linearly from p U2 to zero
as we move from the sea surface up to z,. This contrasts
with the model of Chalikov and Makin (1991 ) in-which
7., has step function behavior, being a constant fraction
of pU% at and near the surface (in the runs they pre-
sented, the fraction lies between about 0.2 and 0.8),
and decreasing in a single step to zero at an empirically
determined level (at z oc k;32?).

Note that if we combine (27) with (18) we obtain
a relation between the rate of wave generation and U,
that does not involve X.:

&v_ Em(k) =9 ~1 ﬂ)z
o oE(K) ""’( '

&7

(28)

So the wave generation rate is determined by the wave
age ¢,/ U, and the Phillips parameter ap. In fact this
is not surprising, since we assume that all the air-sea
momentum flux is taken up by the waves, and distrib-
uted to the different wavenumber components in fixed
ratios. ‘ -

If we neglect molecular viscosity, the difference be-
tween the total applied stress pU2 and ,, must be ac-
counted for by the turbulent shear stress 7,, so
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pUi(z/2,), O
Z

pUL, =

T(z) = [
We can relate (29) to the Prandtl (1925) mixing length
formulation for the turbulent shear stress (7, = p/?|dU/

dz|dU/dz), and to the eddy viscosity formulation (r,
= pvrdU/dz), if the mixing length / is given by

2(Uy/c)z, 0<z<z
1= [ ok g (30)
k(z — zy), Z> 1z,
and the eddy viscosity v is given by
2U%/c,) (22228, 0<z<z,
T = (31)
kUy(z — zy), z > z,.

Using the definition ( 15) of z,, it can be seen that both
[ and v are continuous at z = z,. Examples of the
profiles of / and v are shown in Figs. 2 and 3. We can
justify the change in the slope of the mixing length
profile for z < z, by the fact that wave-associated mo-
tions carry some of the shear stress that would otherwise
have been carried by the turbulence. We can write vr
as the product of the mixing length / and a velocity
scale v, where

{U*(z/z,,)"z, 0<z<z,
v =

1Us, z =z,

(32)

In fact, we can write v = [(7,/p)"/? for all z, so the
velocity scale v is a modified friction velocity.

d. Other spectra and velocity profiles

If we let the power law p of the wave energy spectrum
in (11) be different from 3, then the small-scale struc-
ture of the sea surface can no longer be self-similar,
only self-affine, with r., # r,. If we apply the same geo-
metrical argument as we applied for the self-similar

- a
N
L !
N
sl
o Z=Zp L,
n z=2,
o I 1 1 L L i 1 i1 | J
0 0.5 1.0 15 2.0 2.5
1z,

FIG. 2. Example of the profile of mixing length /, ~— =

for ¢,/ U, = 12.89.
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FIG. 3. Example of the profile of eddy viscosity vr,
for ¢,/ Uy = 12.89.

case, the ratio of critical height to inverse wavenumber,
kz., should be proportional to (rz')/(r'), since z.is
a vertical dimension and k™' is a horizontal one. Since
re oc k, we have

kz.(k) = K,k3=PV2, (33)
where K, is a constant, ax}gi the velocity profile becomes
U(z) = g"*(z/ Kp) /"7, (34)

The energy flux to the waves is then given by

B_W_Em(k) =
p oE(k)

so that Ei,(k)/[oE(k)]is no longer independent of k.
For example, if p < 3, as in the theory of Phillips
(1985), which predicts p = 5/2, k"2 obviously de-
creases with k and |X.|? also decreases with k, in fact
very rapidly at large wavenumbers where kz. > 1. The
momentum flux to the various wavenumber compo-
nents will be given by

1:-[in(k) oC |xc[2k-(p+”/2- (36)

For p < 3, the k~*!)/2 factor will tend to push the
support of the momentum flux to higher wavenumbers
than for p = 3, but the |X.|? factor will have the op-
posite effect. The end result is difficult to predict with-
out performing an explicit computation of X, for a
whole range of kz. with a velocity profile of the form
(34). I would, however, expect the resulting behavior
of the overall drag coefficient to be rather similar to
the predictions in the next section, provided that p is
not too different from 3.

-2
wﬁ_ = (%G, (35)

3. Results

An example-of the vertical profile of X is shown in
Fig. 4 The effect of the singularity at z = Z;is a kink
in the real part of X and an infinite derivative for the
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FIG. 4. Example of the solution of the Rayleigh equation
for a square root velocity profile, K = 0.15.

imaginary part. Table 1 shows the value of X, as a func-
tion of K, together with the nondimensional wave
generation factor, (pw/p)e 'Ein(k)/E(k) = (=/
2)|X.|?K~". From (28) we can relate wave generation
to the wave age if we know the Phillips parameter ap,
for which a variety of formulations are reported in the
literature. In this paper, results using three different
formulations will be compared. The first is the constant
value,

ap = 0.0081, (37)

reported by Pierson and Moskowitz (1964). In the
other two formulations, ap depends on the wave age,
el Uy

. ap = 0.054(c,/ Uy)™3,
ap = 0.57(c,/ Uy) 2.

(38)
(39)

TABLE 1. Solution of Rayleigh equation at the critical level (X,)
and nondimensional wave generation factor (p./p)e™'Ein(k)/E(k)
= (7/2)| X.|2K~" for various values of K = kz,.

r 2p-1

K Rex. ImXe 7| %IK
0.010 —-0.1041 +0.2795 13.97
0.015 -0.0859 +0.2931 9.768
0.02 —-0.0708 +0.3017 7.543
0.03 -0.0462 +0.3114 5.193
0.05 . -0.0097 +0.3179 3.178
0.07 +0.0173 +0.3172 2.265
0.10 +0.0476 +0.3106 1.551
0.15 +0.0824 +0.2942 0.9775
0.2 - +0.1057 +0.2760 0.6860
0.3 +0.1333 +0.2405 0.3959
0.5 +0.1513 +0.1809 0.1747
0.7 +0.1483 +0.1363 0.0910
1.0 +0.1300 +0.0899 0.0392
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Equations (38) and (39) were employed by Janssen
(1989), using different interpretations of the JON-
SWAP results (Hasselmann et al. 1973). The three
equations (37)-(39), or at least their power laws, ap-
pear to encompeass all reasonable observations of wind
seas under neutrally stratified conditions. To take a
more recent example, stereophotographic observations
of short gravity waves performed by Banner et al.
(1989) give results close to (37): the power law that
they found, ap oc (¢,/ U, ) "*182018) oives a rather slow
variation of ap, and their constant of proportionality
is not too different from that in (37).
Using the three different relations. we obtain:

cE(k)
0.31(U,/cp)?,
~ ¢ 0.046(U,/c,)*3,
0.0044( Uy /c,)'"?,

ap = 0.0081

ap = 0.054(c,/ Uy) 723

ap = 0.57(c,/ Uy) 7",
(40)

where we have assumed that p,./p =~ 800. Graphs of
these nondimensional wave generation factors are
shown in Fig. 5. For constant ap, (40) is reminiscent
of Plant’s (1982) relation,

Ein(k) U* -
ER) 04L(k } cosé,

(41)

also plotted in Fig. 5, but the constant factor is much
larger. This can perhaps be justified by noting that for
a given wave spectrum, ¢~ Ei, (k)/E(k) will be linearly
proportional to the wavenumber in Plant’s formula-
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FIG. 5. Nondimensional wave generation factor, (p,./p)o "' Ein(k)/
E(k), as a function of wave age ¢,/ U,. Open dashed line with
plus signs: ap = 0.0081; dotted line with crosses: ap = 0.054(c,/
U,)™*7; solid line with triangles: ap = 0.57(c,/U,)~*'?; and dotted
line without symbols: Plant’s (1982) relation (37) with abscissa c(k)/
(Uy cos'/*) instead of ¢,/ U,. S
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tion, whereas it is forced to be constant in the present
simplified model. For § = 0 the two relations are equal
at k/k, ~ 7.7 or ¢/0, ~ 2.8. The other two formu-
lations for ap give rates of wave generation that are
more slowly varying functions of U, /c,. If ap o< (¢,/
U,)™", we would have a linear relation o ™' Eis(k)/ E(k)
oc (Us/c,), resembling the formulation o ~'Eiq(k)/
E(k) oc [28U4/c(k)] cosf® — 1 used in the spectral
wave model of Hasselmann et al. (1985), which is in
turn based on the field results, o ™' Ein(k)/E(k) oc [U(5
m)/c] cosd — 1, of Snyder et al. (1981).

A comparison with results from the numerical mod-
els of Janssen (1989, 1991) and Jenkins (1992) is
shown in Fig. 6 for young sea states, with ¢,/ U, = 5
and U, = 0.7 ms~! for all models except Janssen
(1991). The results of Janssen (1991, Fig. 1) are plotted
for a logarithmic wind velocity profile with a roughness
length that includes the wave effects, given by oc
= gzo/ U% = 0.144, that is, enhanced by a factor of 10.
For fully developed sea states, corresponding results
are shown in Fig. 7, with a¢ = 0.0144, that is, without
an enhanced roughness length, for Janssen (1991, Fig.
1), and with ¢,/ U, = 25 and U, = 0.7 m s™' for the
other models.

The present model [using Eq. (28)] gives a constant
value of ¢ 'Ej,(k)/E(k), defined only for k > k,. It
is generally greater than the predictions of the other
models for the fully developed sea state except in the
high-wavenumber tail. For the young sea state it also
diverges quite a lot from the other models, but the
other models are also in poor agreement with each
other for k > k,. The disagreements are not surprising
since the simplified model does not permit ¢ ' Ej,(k)/

¢ Ui=h
p
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FIG. 6. Nondimensional wave generation factor, (pu/p)o ™' Eis(k)/-
E(k), as a function of wavenumber, for “young” sea state, ¢,/ U,
= 5, with Phillips parameter ap = 0.57(c,/ U,) ™2, and friction ve-
locity U, = 0.7 m s~'. Broken line with plus signs: model resuits of

Janssen ( 1989); dash-dotted line: model results of Jenkins (1992); _

solid line: present model; dotted line: results from the simple surface-
layer model of Janssen (1991) with a¢c = 0.144.
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F1G. 7. Nondimensional wave generation factor as a function of
wavenumber, for “‘developed” sea state (¢,/ U, = 25), with Phillips
parameter ap = 0.57(c,/U,)™>'* and U, = 0.7 m s™". Broken line
with plus signs: model results of Janssen (1989); dash-dotted line:
model results of Jenkins (1992); solid line: present model; dotted
line: results from the simple surface layer model of Janssen (1991)
with ac = 0.0144.

E (k) to vary with wavenumber, as has been discussed
above. The momentum flux, computed from (36 ) with
p = 3, is predicted to be proportional to k~* by the
present model. Hence, it is supported by the whole of
the spectrum—alternative (ii) described in section 1b.
The momentum flux is somewhat biased to the short
wavelengths, compared with the energy flux propor-
tional to k™%/2,

If the spectral exponent p is less than 3, the horizontal
straight lines in Figs. 6-7 will be replaced by curved
lines of negative slope, the slopes getting steeper with
increasing values of k. If p > 3 the horizontal lines will
be replaced by lines with positive slope.

Figure 8 shows graphs of the modeled drag coefficient
referred to a height z = k"',

“ o
co(k;')=[U—(,;*:.—)]
p
£y .1 £ & kG 2
=|-L+-log|l—=-2%---2+
Uy xl°g(2KU, 2 U, 1)]

(k;' > z,), (42)

as a function of wave age, for the three different for-
mulations of the Phillips parameter. There is greatest
difference between the formulations for small ¢,/ U,,
the difference being small for ¢,/ U, > 15. The reason
for_the small differences for larger ¢,/ U, is probably
because log[(¢,/ U, )/ K] is then-a slowly.varying func-
tion of ¢,/ U,, being the same for all three formulations
near ¢,/ U, = 17. [See Fig. 9. The three terms inside
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Colk, ™)

0.012

0.008

Colky,™")

0.004

FIG. 8. Drag coefficient at = = k" as a function of ¢,/ Uy Lines with symbols: present model;
open dashed line with plus signs: ap = 0.0081; close dashed line with crosses: ap = 0.054(c,/
U,)~%%; solid line with triangles: axp = 0.57(c,/ U,)~*'%; lines without symbols: from experimental
data: dashed line: from the relation of Toba and colleagues [Toba and Koga 1986, Egs. (9) and
(10)]; dash-dotted line: from HEXMAX measurements in the southern North Sea (Maat et al.
1991); dash-and-three-dots line: from Lake Ontario measurements (Donelan 1990), assuming
ap = 0.57(c,/ U,)~¥2. .

the logarithm in (42) are written in decreasing order (i) from field and laboratory data by Toba and col-

of absolute value. if ¢,/ Uy > 2/ =.5 and K< 1] leagues [ Toba 1979; Toba and Koga 1986, Egs. (9)-
In Fig. 8 I also show the drag coefficient obtained  (10); Toba et al. 1990, Eq. (31,

from formulas fitted to experimental measurements:

" gz \I”’
' Cﬂz>=“{“*(aaﬁzzr)}
. Y%

g o o S g ™ 2 & —2
- e i it B = Cp(k:') = k¥ log| —==—|| ; (43
— p(ky) = x [ Og(0.025U*>] (43)
. i ‘.\_,; _____ );r_/.- (ii) from Lake Ontario field data (Donelan 1990),
sl ros s s —
- /‘ SEIERSs s v s e 2.53
Q L G L ZO 5 U* Y
ST S a7 1-84(7) ’ (44
SE ’ *
° & where 1 calculate <712> from (10) and (13) with a
r =0.57(c,/ Uy)~>'*; and
. (iii) from North Sea HEXMAX data (Maat et al.
1991),
- . ‘ . . T 8o _ g2\ ~
5 = 2 S — v = O'S(U,‘) . B (45

cp/ U, oy
-y . . -

FIG. 9. Semilogarithmic plot of (¢,/ U.)/ K against “The corresponding - nondimensional = roughnes

dashed line: ap = 0.0081: close dashed line: ap v, Temgths k,zo are shown in Figs. 10 (semilogarithmi¢

U.)™*3; solid line: ap = 0.57(c,/ Us) "2 plot) and 11 (log-log plot).
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 FI1G. 10. Semilogarithmic plot of nondimensional roughness length &,z as a function
of wave age ¢,/ U,. Line types and symbols as in Fig. 8.

For fully developed seas (¢p/ Uy > 20) the present The model predicts that the roughness length decreases
model gives significantly lower values for drag coeffi- exponentially with wave age, whereas the field mea-
cient and roughness length than the field observations.

surements indicate a power-law behavior. For young
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FIG. 11. As in Fig. 10 but plotted on a log-log scale.
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FiG. 12. Contour plot of the wind speed at z = 10 m as a function
of ¢,/ Uy and U, for constant ap = 0.0081.

wind seas, the experimental drag coefficient graph of
Maat et al. (1991) lies between the model curves for
apoc (c,/ Uy) 2 and ap o (¢p/ U,)~%'*; the Donelan
(1990) drag coeflicients for ap cc (¢,/ U,)~*'* are con-
siderably lower than the corresponding predictions of
the model.

Results referred to a fixed height of 10 m are shown
in Figs. 12-18. Figures 12-14 are contour plots of the
wind speed at the 10-m level, as a function of wave
age and friction velocity. It can be seen that U, and
Cp(10 m) depend on both wind speed and wave age.
If we follow individual wind speed contours along, we
can see that the friction velocity first increases with
wave age, and then decreases, while the 10-m level is
within the “logarithmic” part of the wind profile. The
vertically directed contours in the top right-hand parts

'

o for o, = 0.054(c,/U.)*°

05t

0.0 - - ‘ :

0 5 10 15 20.. 25 20 35 40
c/U.-

FIG. 13. Contour plot of the wind speed at = = 10 m as a function

of ¢,/ Uy and U, for ap =0.054(c,/ Uy,
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U,, for o, = 0.57(c/U.) >
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FIG. 14. Contour plot of the wind speed at z = [0 m asa function
of ¢,/ Uy and U, for ap = 0.37(c,/ L),

of the figures correspond to z, > 10 m, so that the 10-
m level is in the square root part of the wind profile.
From (12) and (27), the constant of proportionality
(g/K)"? is a function of ¢,/ Us, |X.|? and ap, and
since |X.|* depends just on K and we assume that ap
depends only on ¢,/ Uy, the wind speed at a specific
height must be fixed if ¢,/ U, 1s fixed, independent of
U, . This counterintuitive resuit will be modified if we
let turbulence play a greater role in the region z < Z,
and let capillary waves or other roughness elements
support some of the momentum flux. It should be
pointed out that very few accurate field measurements
of wind profiles have been made beneath the critical
level z, over wind seas, particularly if we require Z,
> 10 m. For example, choose ¢,/ Uy = 25 and Uy = 1.0
m s~ in Fig. 13. The corresponding sea state has a
peak period of 16 sec and a significant wave height of
10.1 m. These are rather severe conditions, and it is
unlikely that many wind profile and wind stress mea- -
surements are available under such circumstances with
instruments situated so close to the sea surface.

Figures 15-18, which show the drag coefficient re-
ferred to the 10-m level, correspond to taking horizon-
tal slices through the preceding figures at U, = 0.7
ms~! and U, = 0.3 ms™', using the three formulas
for ap. Experimental results are shown, using the for-
mulas (43)-(45), but note that ap = 0.054(c,/
U,)"¥? is used to calculate (n*) for the Donelan
(1990) curve in Fig. 18.In addition, I show the param-
eterization of North Sea measurements by Geernaert
et al. (1987), which is supposed to hold for a large
range of U, values:

—243 -
Cp(10 m)=0.012(—ci) . (46)

Us

Model results of Janssen (1989) and Jenkins (1992’)*
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FIG. 15. Drag coefficient for z = 10 m from the present model. Open dashed lines: ap = 0.0081.
With open circles, U, = 0.3 m s™'; with solid circles, U, = 0.7 m s~'; close dashed lines (short
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2013

- dashes): ap = 0.054(c,/ U,) ™%, With open circles, U, = 0.3 m s~'; with solid circles, U, = 0.7
m s™'; solid lines: ap = 0.57(c,/ U, )~*'?. With open circles, U, = 0.3 m s™'; with solid circles,

U,=07ms™".

are also presented, and, in Fig. 16, an example of Nor-
deng’s (1991, Fig. 4a) model results for U, = 0.7 m s,
The model of Janssen (1991) can be expected to follow
quite closely the drag coefficient results of Janssen
(1989), since the latter model was used as a basis for
developing the former. The model of Chalikov and
Makin (1991) also has similar behavior to that-of Jans-
sen (1989). For Fig. 16, for example, Chalikov and
Makin (1991) predict Cp(10 m) ~ 1.5 X 107> for ¢,/
U, = 33, increasing to 3 X 1073 for ¢,/ U, = 3.5, if
we use their Fig. 4e with surface roughness scale \, = 7
X 1073, For ap o (c,/ Uy) >, Chalikov and Makin
(1991) also predict only a slow variation of Cp with
wave age.

For the present, simplified model, if we hold U,
constant, Cp( 10 m) increases to a maximum value as
the wave age increases, and then decreases. This be-
havior occurs for all three parameterizations of ap. The
tendency for Cp(10 m) to increase again for old wind
seas corresponds to the 10-m level “moving” from the
logarithmic part of the wind velocity profile to the
square root part. The drag coefficient’s increase with
wave age for young seas is in general agreement with

the formula of Toba and colleagues (Toba and Koga
1986), but that formula is certainly inconsistent with--

the other experimental results, which show a decrease

of Cp(10 m) with increasing wave age. The Nordeng
(1991) model shows the same type of drag coefficient
behavior as the present model, but its drag coefficient
maximum occurs at a significantly greater wave age.
After the maximum, the simplified model’s drag
coefficient decreases more rapidly with ¢,/ U,, in Figs.
16-18, than the other models and experimental data
analyses [except for the Geernaert et al. (1987 ) results,
which may be subject to a systematic decrease of U,
with increasing wave age ]. This indicates that the pres-
ent model with ap ac (¢,/Uy)™*'? or ap o (c,/
U,)~*/* underestimates the effective surface roughness
for old sea states. The more computationally expensive
models of Janssen ( 1989 ) and Jenkins (1992) with ap
oc (c,/ Uy)7'% show better agreement with the exper-
imental observations, as do the simple models of Jans-
sen (1991) and Chalikov and Makin (1991). It is pos-
sible that we may be modeling a maaifestation of
“ultrasmoothness” of the sea surface, a topic discussed
by Donelan (1990). Note that the simplified model
neglects the effect of mean skin friction: it assumes that
the molecular viscosity v is vanishingly small. Thus,

= there is nothing to prevent the model results from giving

a value of z, less than that predicted for the flow of air
(with its true molecular viscosity ) over an aerodynam-
ically smooth surface (Schlichting 1968 ).
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FIG. 16. Drag coefficient for = = 10 m with Philiips parameter ap = 0.57(c,/ U,)7** and
friction velocity U, = 0.7 m s™". Solid lines: Model results. With solid circles, present model:
with asterisks. Janssen ( 1989); with plus signs, Jenkins ( 1992): with rectangles, Nordeng (1991):
dotted line: curve fitted by Geernaert et al. (1987) to field experimental results with a range of
values of U,; close dashed line (long dashes): from the relation of Toba and colleagues [ Toba
and Koga 1986, Egs. (9) and (10)]; dash-dotted line: from HEXMAX measurements ( Maat et

al. 1991); dash-and-three-dots line: from Lake Ontario measurements ( Donelan 1990).

4. Conclusions

The simplified model for wave generation and air-
sea momentum flux presented in this paper is based,
as are the numerical models of Janssen (1989) and
Jenkins (1992), on a quasi-linear approximation to
the hydrodynamic equations. Denoting the character-
istic wave amplitude by a, mean quantities of order
a?, such as wave momentum, are taken into account,
but fluctuating quantities are only considered to O(a).
In common with Janssen’s ( 1989) model, viscosity and
turbulence are neglected when considering the behavior
of the wave-induced velocity fluctuations in the at-
mospheric boundary layer, so that Miles’ (1957) wave
generation theory can be applied, and the resulting
Rayleigh equation is solved by the method of Conte
and Miles (1959). The iterative procedure used in the
Janssen (1989) model and its rather expensive com-
putation of the wind velocity profile on a fine mesh
are avoided by prescribing the form of the profile in
advance, using a combination of a logarithmic profile
above the highest critical level z, and a square root
profile below that height.

The simplified model avoids the explicit specification
of a surface roughness parameter. Instead, it assumes

that the ocean surface gravity waves provide the effec-
tive roughness: as energy is transferred to the waves,
there is a corresponding momentum flux, and 100 per-
cent of the available momentum is assumed to be taken
up by the waves. The very simple form (13) is used
for the wave energy spectrum, and for each wavenum-
ber k, the critical height at which the phase speed c(k)
= (g/k)'’*is equal to the wind speed is assumed to be
a constant fraction of k~'. This assumption is based
on the self-similarity property of the k7 tail of the
wave spectrum, and leads to the square root velocity
profile mentioned above. Assuming that the downward
momentum flux is the sum of a turbulent shear stress
r, and a wave stress 7, we then find that 7, increases
linearly from zero at z = 0 to pUj at = = z,, with 7,
having a corresponding linear decrease. The effective
mixing length, eddy viscosity, and velocity scale, which
can be considered to contribute to 7, have plausible
vertical profiles [see Figs. 2-3 and Egs. (3)-(32)].
Wave generation rates predicted by the simplified
model, together with those predicted by the models of
Janssen (1989, 1991) and Jenkins (1992), are shown
in Figs. 5-7. When discussing the factors that affect
the generation rates, it is important to distinguish be-
tween (i) the variation of the generation rate between
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FIG. 17. Drag coefficient for z = 10 m with ap = 0.57(c,/U,)™>*and U, = 0.3 m s, Solid
lines: model results—with open circles, present model; with triangles, Janssen ( 1989); with crosses,

" Jenkins (1992). Dotted line: curve fitted by Geernaert et al. (1987) to field experimental results

with a range of values of U,. Close dashed line (long dashes): from the relation of Toba and
colleagues [ Toba and Koga 1986. Egs. (9) and (10)]. Dash-dotted line: from HEXMAX mea-
surements (Maat et al. 1991). Dash-and-three-dots line: from Lake Ontario measurements ( Do-

nelan 1990).

different wave spectra and (ii) the distribution of the
generation rate within a wave spectrum. The assump-
tions behind the simplified model restrict ¢ ~'E;q(k)/
E(k) to be independent of wavenumber within any
one wave spectrum. They do allow ¢ ™' E;,(k)/E(k) to
vary between different spectra, and it is predicted to
depend only on the Phillips parameter ap, the wave
age ¢,/ U, and the density ratio p/p.. If apis constant,
we have ¢~ Em(k)/E(k) o (¢,/ Us) 7% if ap ac (cp/
U,) 3/*then a"E,,,(k)/E(k) oc (cp/ Uy )‘”2 It should
be noted that there is not much information available
from field experiments to determine the spectral dis-
tribution of the rate of wave generation (Donelan
1990), particularly in the high-frequency tail.

It may be possible to improve wave generation rate
predictions by using spectral tail formulations that are
different from k™3, which would then be self-affine
rather than self-similar, together with velocity profiles
with a power law different from 1/2 (or, indeed, a log-
arithmic profile). If we were to increase the compu-
tational effort, we could use the actual velocity profile
in the Rayleigh equation, rather than the artificially
extrapolated square root profile employed here.

The drag coefficients predicted by the simplified
model, although differing in a number of respects from

experimental results, do behave in a reasonable manner
under the circumstances. Figures 12-14 indicate that
U,, and thus the drag coefficient, depends on both
wind speed and wave age. The nondimensional rough-
ness length k,z, decreases exponentially with wave age
for old wind seas (if we hold U, constant), rather than
according to the power laws suggested by the fits to
field observations of Donelan (1990) and Maat et al.
(1991), and the drag coefficients in consequence be-
come significantly lower than these curve fits indicate.
This may be a manifestation of a tendency towards
“ultrasmoothness,” discussed by Donelan (1990). The
assumptions employed in formulating the simplified
model mean that at the sea surface we should have
aerodynamically smooth flow for a fluid with viscosity
v — 0, since 7, > 0 as z = 0.

If we refer the drag coefficient to a fixed level (10
m) and consider fixed values of wind stress or friction
velocity, we find that Cp increases with wave age for
very young wind seas if U, is held constant. This is
physically reasonable, since very young seas have very
small wave heights, and thus can be cxpected to have
low roughness. The formula fitted by Toba and col-
leagues [ Toba and Koga 1986, Egs. (9)-( 10)] makes
the drag coefficient increase monotonically with wave
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FIG. 18. Drag coefficient for = = 10 m with Phillips parameter ap = 0.054(c,/U,)™"* and
friction velocity U, = 0.7 m s™'. Close dashed lines (short dashes): model results—with solid
circles. present model; with asterisks, Janssen (1989); with plus signs, Jenkins (1992). Dotted
line: curve fitted by Geernaert et al. (1987) to field experimental results with a range of values of
U.. Close dashed line (long dashes): from the relation of Toba and colleagues [Toba and Koga
1986. Eqs. (9) and (10)]. Dash-dotted line: from HEXMAX measurements (Maat et al. 1991).
Dash-and-three-dots line: from Lake Ontario measurements ( Donelan 1990).

age, but is inconsistent with other field measurements,
and the simplified model predicts that Cp(10 m)
reaches a maximum and then decreases. If we refer to
Fig. 14 of Toba et al. (1990), on which their relation
between roughness length or drag coefficient and wave
age can be plotted as a straight line, we see that there
are two distinct clusters of points: one cluster corre-
sponding to field measurements with moderate to large
wave ages, and the other corresponding to laboratory
measurements with very small wave ages. It would be
just as plausible to draw a curved line through the clus-
ters, so that the roughness length becomes small for
both young and old wind seas. It has also been suggested
that laboratory experiments are unreliable predictors
of the behavior of the atmospheric boundary layer un-
der field conditions—Donelan (1990), for example,
found a relation between roughness length, wave en-
ergy, and wave age for laboratory data given by Zo/
(n*)* = 0.205(Uy/c,)*'®, which gives significantly
smaller roughness than his corresponding relation (44)
for field observations.

For more fully developed sea states, Cp(10 m) de-
creases with wave age if we hold U, constant, for con-
stant Phillips parameter ap and for ap oc (c,/Us) ~*/?
as well as for ap oc (c,/ U, ) ™*/*. So do the experimen-

tally measured values, though they tend to decrease
more slowly. The more computationally expensive
models of Janssen (1989) and Jenkins (1992) do ap-
pear to predict the field observations better, as do the
simple models of Janssen (1991) and Chalikov and
Makin (1991), if we assume that ap oc (c,/ Us) ™'
Nordeng’s (1991) model, in common with the present
model, predicts a maximum in the drag coefficient but
for significantly older sea states.

The simplified model’s second increase in the drag
coefficient, for old wind seas, can be seen prominently
in the contour plots of Figs. 12-14. It is a result of the
10-m level moving into the square root part of the
wind profile, and has a counterpart in a few data points
of Geernaert et al. (1987, Fig. 7), which also show an
“upturn,” though this may be a coincidence. It is prob-
able that a proportion of the air-sea momentum flux
is in fact carried by direct viscous drag on the sea surface
[or by a different wind-wave interaction mechanism
than that of Miles (1957)], so that 7,, < pU3 at z = 0.
The transition between the “square root” and “loga-
rithmic” behavior should then be more gradual.

An advantage of the present model is that it has only
one free, tunable parameter, ap, which determines the
wave spectrum and which in this paper [ have assumed
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to be a function of ¢,/ U, . Although turbulence is ne-
glected in computing the oscillatory components of the
airflow, it is taken into account in determining the
mean flow, and Figs. 2-3 show plausible mixing length
and eddy viscosity profiles. The model cannot be ex-
pected to account for momentum flux due to effective
roughness contributions other than deep-water gravity
wave generation. Unlike the models of Janssen (1989,
1991), Chalikov and Makin (1991), and Jenkins
(1992), the present model is able to predict an increase
in Cp(10 m) as the wave age is decreased even when
apis made constant, for a rather wide range of U, and
¢p/ Uy (see Fig. 12). This behavior is significant, since
there is experimental evidence that the variation of ap
with wave age may be rather slow (Banner et al. 1989).
To conclude, the present model, given its simplicity,
produces a fairly realistic representation of the behavior
of the drag coefficient over wind seas, and may help to
‘resolve some of the difficulties involved in reconciling
laboratory and field experimental results. That no “ar-
tificial” surface roughness parameter is used, all the
air-sea momentum flux being carried by the generation
of gravity waves, is an important feature of the model,
as the model results then indicate to what extent we
can use gravity wave generation to support the mo-
mentum flux. The drag coefficient is predicted to be
sensitive to the formulation of the Phillips parameter
as a function of wave age (or, indeed, of other condi-
tions). Experiments at scales intermediate between
those of past laboratory and field studies would provide
useful information on the behavior of the drag coeffi-
cient for very young wind seas. The model’s results for
wave generation rates are quite crude: it may be possible
to improve them by considering different types of wave
spectra and wind velocity profile, at the probable cost
of greater computational effort. More general wave
spectra, including directional spectra, could also be
employed, though the mathematical analysis, and also
the computation, would be more complicated.
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